A new efficient hyperelastic finite element model for graphene and its application to carbon nanotubes and nanocones
نویسندگان
چکیده
A new hyperelastic material model is proposed for graphene-based structures, such as graphene, carbon nanotubes (CNTs) and carbon nanocones (CNC). The proposed model is based on a set of invariants obtained from the right surface Cauchy-Green strain tensor and a structural tensor. The model is fully nonlinear and can simulate buckling and postbuckling behavior. It is calibrated from existing quantum data. It is implemented within a rotation-free isogeometric shell formulation. The speedup of the model is 1.5 relative to the finite element model of Ghaffari et al. [1], which is based on the logarithmic strain formulation of Kumar and Parks [2]. The material behavior is verified by testing uniaxial tension and pure shear. The performance of the material model is illustrated by several numerical examples. The examples include bending, twisting, and wall contact of CNTs and CNCs. The wall contact is modeled with a coarse grained contact model based on the Lennard-Jones potential. The buckling and post-buckling behavior is captured in the examples. The results are compared with reference results from the literature and there is good agreement.
منابع مشابه
The Molecular Mechanics Model of Carbon Allotropes
Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...
متن کاملYoung s Modulus of Single and Double Walled Carbon Nanocones Using Finite Element Method(TECHNICAL NOTE)
In this paper a three-dimensional finite element (FE) model of carbon nanocones (CNCs) is proposed and used for obtaining Young\'s modulus of CNCs. In this model, stretching and bending forces between carbon atoms are simulated using truss elements in ANSYS software. Then the model is subjected to the tension and by obtaining the stiffness of the CNC and using elasticity theory, Young’s modulus...
متن کاملStructural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes
In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.09825 شماره
صفحات -
تاریخ انتشار 2018